信号发生器的I/Q调制
基本的调制方案包括幅度、频率和相位调制。调制信号可以使用幅度和相位(矢量)的极坐标来表示。I/Q调制由于频谱效率较高,因而在数字通信中得到广泛采用。
I/Q调制使用了两个载波,一个是同相 (I) 分量,另一个是正交 (Q) 分量,两者之间有90。的相移(见图1)。
图1 I/Q 相量图
I/Q调制的主要优势是能够非常轻松地将独立的信号分量合成到一个复合信号中,随后再将这个复合信号分解为独立的信号分量。
在数字发射机中,丨信号和 Q 信号通过同一个本地振荡器 (LO) 混合,不过这个本振在其中一条 LO 路径上放置了一个90°的移相器 (见图2)。这个90° 的相移使 I 信号和 Q 信号彼此正交,互不干扰。
图2 基带 I/Q 调制
主要IQ调制参数
调制方案
矢量信号的变化在I/Q图上可以用幅度、相位、频率或这些指标的组合来表示。这些幅度和相位的变化产生了不同的调制格式。由于数据是用二进制传输的,星座图中的点数必须为2的幂。最基本的数字调制格式为:
PSK(相移鋰控)
FSK(频移繾控)
ASK(幅移繾控)
QAM(正交幅度调制)
星座图和符号
星座图展示了QAM格式的可用符号。以16QAM格式为例,每个符号表示着四个二进制位的一种可能组合。对于这四个二进制位来说,总共可能有16个组合。换言之,每个符号表示着四位。
为了提高数据带宽,我们可以增加每个符号表示的位数,这样可以提高频谱效率。不过,随着星座图中符号数量的增加,符号间的距离开始变小。符号越来越接近,因此就越容易受到噪声和失真的影响,出现错误。图3展示了当从16-QAM格式变为64-QAM格式时,符号密度的增加。
图3 16-QAM 和 64-QAM 格式的星座图
数字调制类型一变量
通信系统在基本调制方案中使用了三个主要变量。这些变量可以避免I/Q信号迹线通过零位(星座图的中心),从而在功率效率上占据优势。
IQ偏置调制:在 ZigBee 2450-MHz频段中使用OQPSK
差分调制:在蓝牙 2.0+EDR中使用 π/4 DQPSK
恒包络调制:GSM 使用 GMSK; Wi-SUN使用2-FSK
图4 IQ调制变量
正交频分多路复用 (OFDM) 是另一种常用的调制方案。很多最新的无线和电信标准都采用了这种策略,例如数字广播、xDSL、无线网络 和 5G 新空口 (NR) 蜂窝技术。
OFDM 使用了多个重叠的射频载波。每个载波都在精心选择的频率上工作(这个频率与其他载波正交),并且采用了并行子载波方案,因此这种传输方案能够支持更高的比特率。此外,OFDM 方案在频谱效率、灵活性和稳定度等方面都具有优势。
比特率与符号率(波特率)
比特率是系统传输比特流的频率。符号率等于比特率除以每个符号可以传输的比特数。例如,在 QPSK 中,每个符号表示两个比特。QPSK 的符号率就是其比特率的一半。信号带宽和符号率成正比。
符号率=比特率/每个符号传输的比特数
误差矢量幅度(EVM)
误差矢量是理想 I/Q 参考信号与被测信号之间的矢量差。EVM 只是这个误差矢量的幅度。误差矢量是本地振荡器的相位噪声、功率放大器的噪声以及 I/Q 调制器减损等因素共同作用的结果。
为了确保能够评测被测器件的 EVM 性能,您所使用的信号发生器的 EVM 性能害要比被测器件的预期EVM性能好 5 至10 dB.
例如,802.11 ax 发射机EVM 标准要求1024 QAM 的 EVM 达到 -35dB。 对于在设计验证中使用的信号发生器,其剩余 EVM 本底应低于 -45dB。不过,在生产测试中,EVM 性能小于 -40 dB 就己经非常好了。
图 5 误差矢量图解
图6 802.11 ax 星座图和误差概览
图7 矢量信号发生器的EVM性能指标至少比待测件预期EVM好5~10dB
I/Q减损
I/Q减损可能会在您的设计中突然出现。当出现这种情况时,您需要仿真这些减损,以便对您的设计进行强化测试,或对信号路径上的时间和幅度变化予以补偿。您的信号发生器能鸲生成I/Q减损。使用下列I/Q调整来仿真您所需要的减损。I/Q调整的使用情况与影响汇总请参见表1。
I/Q偏置:I 信号和Q信号的直流偏置
正交角度:Q信号相位相对于 I 信号相位的偏移
I/Q偏移:I 信号和Q信号之间的相对时延
I/Q增益平衡:相对于Q信号幅度的 I 信号幅度
I/Q相位:通过同时旋转 I 信号和Q信号,获得内部I/Q信道的绝对相位
表1 I/Q调整的使用情况
除了I/Q调整之外,您还可以向载波添加相位噪声减损或 AM/FM 以仿真不完美信号,或向调制信号添加 AWGN 作为干扰源,以便您进行设计验证。